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Abstract

Representation is a fluent. A mismatch between the real
world and an agent’s representation of it can be signalled by
unexpected failures (or successes) of the agent’s reasoning.
The ‘real world’ may include the ontologies of other agents.
Such mismatches can be repaired by refining or abstracting
an agent’s ontology. These refinements or abstractions may
not be limited to changes of belief, but may also change the
signature of the agent’s ontology. We describe the imple-
mentation and successful evaluation of these ideas in the ORS
system. ORS diagnoses failures in plan execution and then
repairs the faulty ontologies. Our automated approach to dy-
namic ontology repair has been designed specifically to ad-
dress real issues in multi-agent systems, for instance, as en-
visaged in the Semantic Web.

Introduction
The first author [AB] has a vivid memory of his introduc-
tory applied mathematics lecture during his first year at uni-
versity. The lecturer delivered a sermon designed to rid the
incoming students of a heresy. This heresy was to entertain a
vision of a complete mathematical model of the world. The
lecturer correctly prophesied that the students were dissatis-
fied with the patent inadequacies of the mathematical mod-
els they had learnt at school and impatient, now they had
arrived in the adult university world, to learn about sophis-
ticated models that were free of caveats such as treating the
weight of the string as negligible or ignoring the friction of
the pulley.

They were to be disappointed. Complete mathematical
models of the real world were unattainable, because it was
infinitely rich. Deciding which elements of the world were
to be modelled and which could be safely ignored was the
very essence of applied mathematics. It was a skill that stu-
dents had to learn – not one that they could render redundant
by modelling everything.

This all now seems obvious. AB is surprised at the naivety
of his younger self — since, before the sermon, he cer-
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tainly was guilty of this very heresy. But it seems this lesson
needs to be constantly relearnt by the AI community. We too
model the real world, for instance, with symbolic represen-
tations of common-sense knowledge. We too become impa-
tient with the inadequacies of our models and strive to enrich
them. We too dream of a complete model of common-sense
knowledge — and even aim to implement such a model,
cf. the Cyc Project1. But even Cycorp is learning to cure
itself of this heresy, by tailoring particular knowledge bases
to particular applications, underpinned by a common core.

If we accept the need to free ourselves of this heresy and
accept that knowledge bases only need to be good enough
for their application, then there is a corollary that we must
also accept: the need for the knowledge in them to be fluent,
i.e., to change during its use. And, of course, we do accept
this corollary. We build adaptive systems that learn to tailor
their behaviour to a user or improve their capabilities over
time. We have belief-revision mechanisms, such as truth
maintenance (Doyle 1979), that add and remove knowledge
from the knowledge base.

However, it is the thesis of this paper that none of this goes
far enough. In addition, we must consider the dynamic evo-
lution of the underlying formalism in which the knowledge
is represented. To be concrete, in a logic-based representa-
tion the predicates and functions, their arities and their types,
may all need to change during the course of reasoning.

Once you start looking, human common-sense reason-
ing is full of examples of this requirement. Consider, for
instance, Joseph Black’s discovery of latent heat. Before
Black, the concepts of heat and temperature were conflated.
It was thus a paradox that a liquid could change heat con-
tent, but not temperature, as it converted to a solid or a gas.
Before formulating his theory of latent heat, Black had to
separate these two conflated concepts to remove the para-
dox (Wiser & Carey 1983). Representational repair can also
move in the opposite direction: the conflation of “morning
star” and “evening star” into “Venus”, being one of the most
famous examples.

But such representational refinement is not a rare event
reserved to highly creative individuals; it’s a commonplace
occurrence for all of us. Everyday we form new models to
describe current situations and solve new problems: from

1http://www.cyc.com/



making travel plans to understanding relationships with and
between newly met people. These models undergo constant
refinement as we learn more about the situations and get
deeper into the problems.

Consider, for instance, the commonplace experience of
buying something from a coin-in-the-slot machine. Suppose
the item to be bought costs £2. Initially, we may believe that
having £2 in cash is a sufficient precondition for the buying
action. However, we soon learn to refine that precondition
to having £2 in coins — the machine does not take notes.
When we try to use the coins we have, we must refine further
to exclude the new 50p coins — the machine is old and has
not yet been updated to the new coin. But even some of the,
apparently legitimate, coins we have are rejected. Perhaps
they are too worn to be recognised by the machine. Later a
friend shows us that this machine will also accept some for-
eign coins, which, apparently, it confuses with British ones.
Refining our preconditions to adapt them to the real world
of this machine does not just involve a change of belief. We
have to represent new concepts: “coins excluding the new
50p”, “coins that are not too worn to be accepted by this par-
ticular machine”, “foreign coins that will fool this machine”,
etc.

As another example, consider the experiment conducted
by Andreas diSessa on first-year MIT physics students
(diSessa 1983). The students were asked to imagine a situa-
tion in which a ball is dropped from a height onto the floor.
Initially, the ball has potential but not kinetic energy. Just be-
fore it hits the floor it has kinetic but not potential energy. As
it hits the floor it has neither. Where did the energy go? The
students had trouble answering this question because they
had idealised the ball as a particle with mass but no extent.
To solve the problem they had to refine their representation
to give the ball extent, so that the ‘missing’ energy could be
stored in the deformation of the ball. Note that this requires
a change in the representation of the ball, not just a change
of belief about it.

The investigation of representational refinement has be-
come especially urgent due to the demand for autonomous,
interacting software agents, such as is envisaged in the Se-
mantic Web (Berners-Lee, Hendler, & Lassila 2001). To en-
able such interaction it is assumed that the agents will share a
common ontology. However, any experienced programmer
knows that perfect ontological agreement between very large
numbers of independently developed agents is unattainable.
Even if all the ontology developers download their ontolo-
gies from the same server, they will do so at different times
and get slightly different versions of the ontology. They will
then tweak the initial ontologies to make them better suited
to their particular application. We might safely assume a
∼90% agreement between any two agents, but there will al-
ways be that ∼10% disagreement — and it will be a differ-
ent 10% for each pair. The technology we discuss below
provides a partial solution to just this problem.

Note that our proposal contrasts with previous approaches
to ontology mapping, merging or aligning2. Our mecha-

2§4 of the “OWL Web Ontology Language Guide” http://
www.w3.org/TR/owl-guide/

nism does not assume complete access to all the ontologies
whose mismatches are to be resolved. Indeed, we argue that
complete access will often be unattainable for commericial
or technical reasons, e.g., because the ontologies are being
generated dynamically. Moreover, our mechanism doesn’t
require an off-line alignment of these mismatching ontolo-
gies. Rather, it tries to resolve the mismatches in a piecemeal
fashion, as they arise and with limited, run-time interaction
between the ontology owning agents. It patches the ontolo-
gies only as much as is required to allow the agent interac-
tion to continue successfully. Our mechanism is aimed at
ontologies that are largely in agreement, e.g., different ver-
sions of the same ontology, rather than aligning ontologies
with a completely different pedigree, which is the normal
aim of conventional ontology mapping. It works completely
automatically. This is essential to enable interacting agents
to resolve their ontological discrepancies during run-time in-
teractions. Again, this contrasts with conventional ontology
mapping, which often requires human interaction.

Ontologies
Wikipedia defines3 an ontology as:

“the product of an attempt to formulate an exhaustive
and rigorous conceptual schema about a domain”

We will divide each ontology into two parts: the signature
and the theory. By signature we will mean: the type hierar-
chy, the names of the predicates and functions, and the types
or arities of these predicates and functions. By theory we
will mean the definitions, axioms, inference rules and theo-
rems that can be written in the language defined by the sig-
nature. The fields of belief revision4 and truth maintenance
(Doyle 1979) describe mechanisms for repairing the theory.
While theory repair plays a role in our work, our main focus
is on signature repair.

Our ontologies are written in a restricted version of KIF:
the Knowledge Interchange Format: “a syntax for first order
logic that is easy for computers to process5”, which also has
facilities for meta-level reasoning. Our restrictions are to
disallow complex class definitions and to quantify only over
finite sets. A variety of KIF ontologies are available from the
Ontolingua Server6. We chose KIF because it provides a rich
language on which to test our ideas and is in widespread use
with many example ontologies on which to test our ideas.
Our future plans include the transfer of our techniques to
OWL7, which has been adopted by W3C as the standard for
representing ontologies in the Semantic Web.

A fault in an ontology may be detected when an inference
unexpectedly fails (or sometimes unexpectedly succeeds). It

3http://en.wikipedia.org/wiki/Ontology\_\
%28computer\_science\%29
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is then necessary to diagnose the fault and to repair it. Repair
can involve either refinement or abstraction, or a mixture of
both. The repair may be carried out on either the theory or
the signature, or both.

Abstraction vs Refinement
A common technique in automated reasoning is the use of
abstraction (see (Giunchiglia & Walsh 1992) for a survey
and Figure 1 for a diagrammatic representation). A problem
to be solved is first abstracted to a simpler problem. This
simpler problem is solved and its solution is then refined
back and patched to be a solution to the original problem.
This abstraction process can be nested recursively.

Figure 1: The use of abstraction in problem solving

We propose turning this mechanism on its head. The ini-
tial representation of a problem is simple and, thus, easily
solved. As we come to understand the problem and the en-
vironment more deeply, and as we attempt to apply our sim-
ple solution, we discover flaws in our representation of the
problem and the environment. Our simple solution fails and
must be repaired. We refine the initial, over-simple represen-
tations to obtain a more sophisticated solution that addresses
the previous failures (see Figure 2). Again, this process can
be nested recursively.

Figure 2: The use of refinement in problem solving

In (Giunchiglia & Walsh 1992), Giunchiglia and Walsh
categorise the various kinds of abstraction operation they
found in a wide-ranging survey. By inverting each abstrac-
tion operation, a corresponding refinement operation is sug-
gested. We use operations from both these categorisations
to repair ontologies.

Giunchiglia and Walsh’s categories are as follows:

Predicate: Two or more predicates are merged, typically
to the least general generalisation in the predicate type
hierarchy, e.g.,

(Bottle ?X) + (Cup ?X) 7→ (Container ?X).
Domain: Two or more terms are merged, typically by mov-

ing the functions to the least general generalisation in the
domain type hierarchy, e.g.,

(Aunt Me) + (Cousin Me) 7→ (Relation Me).
Propositional: One or more arguments are dropped, e.g.,

(Bottle A) + (Bottle B) 7→ (Bottle).
Precondition: The precondition of a rule is dropped, e.g.,

[(Ticket ?X) → (Travel ?X)] 7→ (Travel ?X).
Note that the first three abstractions modify the signature but
the last one modifies the theory.

These four abstraction operations can be inverted to sug-
gest the following four refinements:
Predicate: One predicate is separated into two or more,

e.g.,
(Container ?X) 7→ (Bottle ?X) + (Cup ?X).

Domain: One term is separated into two or more, e.g.,
(Relation Me) 7→ (Aunt Me) + (Cousin Me) .

Propositional: One or more arguments are added, e.g.,
(Bottle) 7→ (Bottle A) + (Bottle B) .

Precondition: A new precondition is added to a rule, e.g.,
(Travel ?X) 7→ [(Ticket ?X) → (Travel ?X)] .

Note that applying refinements is inherently more complex
than applying abstractions. In abstraction, information is re-
moved, but in refinement it is added. This additional infor-
mation must be constructed, inferred or guessed.

Between abstraction and refinement lies Argument Per-
mutation. Here the arguments of a predicate or function are
reordered, e.g., (Is Route ?X ?Y) 7→ (Is Route ?Y ?X).

The above abstractions and refinements are at the heart
of our dynamic ontology repair technique. They constitute
a classification of ontological mismatch. In particular, we
intend this classification to be complete for signature mis-
matches, although we are always interested to learn of sig-
nature mismatches we have overlooked. This classification
forms the basis both for the diagnosis of faulty ontologies
and of tactics for patching them.

Agents
Our mechanism for dynamic ontology repair is intended to
work in a domain of automated, peer-to-peer agents. For
instance, below we give an implemented, worked example in
which agents for paper publication, conference registration,
hotel accomodation and paper-format conversion interact to
assist the author of a paper to attend a conference.

The underlying motivation for our work is that the peer-
to-peer agent domain raises requirements that are not ad-
dressed by conventional ontology mapping mechanisms. In
particular, there is a requirement for run-time, totally auto-
mated, good-enough alignment between agents with limited
access to each other’s ontologies.



Our current prototype system, ORS, does not fully realise
a peer-to-peer architecture, due to various simplifications we
have made in the initial implementation. We plan to incre-
mentally address these simplifications in subsequent imple-
mentations. These current simplifications include various
assumptions about agents, including that:
• agents are all plan formation and execution softbots with

a simple query/reply performative language;
• currently only one agent, the planning agent, forms plans;

the other agents merely assist in the execution of these
plans;

• agents are honest and knowledgeable;
• agents will perform tasks requested of them, if possible;
• agents have broadly similar ontologies;
• agents other than the planning agent, are always right;
• agents are prepared to answer yes/no and wh*8 questions;
• but agents will not reveal much detail about their ontolo-

gies.
In particular, note that we assume that an agent will not

transmit its whole ontology in order to enable the planning
agent to align its ontology with it. We think it is unrealistic
to expect that most agents will be designed with the func-
tionality to download their ontologies. Moreover, ontolog-
ical information will often be confidential, e.g., a business
asset, that the agents’ owners will not be prepared to make
public. Additionally, some ontologies are virtual, i.e., they
are generated dynamically in response to requests, e.g., RSS
feeds. Thus conventional ontology mapping is not a solution
to the problem posed above, since most such mapping mech-
anisms do assume complete access to all the mismatching
ontologies. We do, however, assume that agents will be able
to answer simple yes/no and wh* queries about propositions
that can be derived from their ontologies, e.g., propositions
that might be preconditions of action rules. We thought this
was the weakest assumption we could make about external
agent functionality, while supporting ORS in its fault diag-
nosis. Inter-agent question-answering exchanges take place
during both plan execution and fault diagnosis.

The ORS System
Our system is called ORS, which stands for Ontology Re-
finement System. An overview of ORS is given in Figure
3.

Communication between agents consists of the exchange
of query and reply performatives. These take the form:

query(Sender,Receiver,QueryType,Query)

reply(Sender,Receiver,QueryType,Answer)

where a Query is a KIF formulae and an Answer is either a
truth value or variable instantiations, depending whether the
QueryType is a yes/no question or wh*-question, i.e., wh*-
questions have Querys with uninstantiated variables and the
Answer instantiates these variables. For instance, the plan-
ning agent might ask a travel agent the cost of a plane flight

8e.g., why?, when?, what?, which?, how?, etc.

from Edinburgh to Miami with the Query, (Flight Edin-
burgh Miami ?Cost) and the travel agent might reply with
the Answer ?Cost = 300. If there is no flight from Ed-
inburgh to Miami then the Answer would be False. This
inter-agent communication is currently provided by a sim-
ple blackboard architecture implemented in Prolog-Linda9.
As we move towards a fully peer-to-peer implementation of
ORS, this blackboard architecture will be replaced.

The planning agent has two ontologies: object-level and
meta-level. The object-level ontology contains its model of
the world including its model of other agents, with action
rules corresponding to the services they provide. The meta-
level ontology contains information about the predicates,
functions, rules, constants and variables of the object-level
ontology. In particular, it contains a mapping of services to
the external agents that it believes provide these services. By
“ontology” we will usually mean the object-level ontology,
unless specified otherwise.

Plan Formation, Deconstruction and Analysis
The planning agent uses its ontology to form a plan to
achieve its goals. This plan is a sequence of actions, some of
which require other agents to perform services on its behalf.
The planning agent’s ontology contains action rules, of the
form premise ⇒ conclusion. The conclusion consists of
a prediction of how the world will change when the action
is executed and the premise consists of the preconditions
under which the action can be successfully applied.

When the planning agent attempts to execute the plan, it
may fail. This will be due to some mismatch between the
planning agent’s ontology and the environment in which the
plan is being executed. For instance, the preconditions un-
der which an external agent is prepared to perform a service
may not be accurately represented in the premise of the cor-
responding action rule. In the next section we will see how
such ontological faults can be diagnosised and repaired.

To form its plans, the planning agent uses Metric-FF
(Hoffmann & Nebel 2001), a state-of-the-art planner that
uses PDDL to represent its world models and plans. PDDL
is a classical logic with bounded quantification over finite
sets, enabling PDDL formulae to be translated into proposi-
tional logic. The ORS translation module translates from KIF
into PDDL (McNeill, Bundy, & Walton 2004).

The plan is executed by running each of its actions. Most
of these actions consist of instructions to external agents to
provide services of various kinds. Each external agent ei-
ther performs the service or informs the planning agent that
it is unable to do so. In deciding whether it is able to per-
form a service, an external agent must check each of the pre-
conditions of its action rule for that service. Some of these
preconditions can be checked by reference to the external
agent’s own ontology. We will call these internal precon-
ditions. But some of them require communication with the
planning agent or other external agents. We will call these

9http://www.sics.se/sicstus/docs/latest/
html/sicstus.html/Linda-Library.html\#Linda\
%20Library
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A vertical dotted line separates the planning agent from the other external agents. The planning agent calls upon modules
for planning, diagnosis, repair and translation. The planner forms plans for specified goals, which the planning agent
then attempts to execute by passing requests to the external agents. When this fails, the plan deconstructor provides a
justification for the original plan, which the diagnostic module uses to try to figure out what went wrong. Diagnosis may
require further communication with the external agents. If a fault is detected then the repair module is asked to repair the
ontology. A variety of representational formalisms are used by the different modules, so the translation module converts
one formalism into another.

Figure 3: An Overview of the ORS System

external preconditions. Thus, the performance of each ser-
vice may be preceded by a flurry of inter-agent dialogue.

For fault diagnosis, ORS requires a justification of the
plan: essentially a proof recording how facts in the ontol-
ogy derive the preconditions of the plan’s actions. Unfortu-
nately, Metric-FF does not provide such a justification. We,
therefore, built a plan deconstructor that, given the plan and
the ontology, provides a suitable justification (McNeill et al.
2003). Since this deconstructor is implemented in Prolog, it
uses a Prolog-like representation of the justification. Again
the translation module translates KIF into this Prolog repre-
sentation (McNeill 2005).

The plan justification is used by the Shapiro Algorithm.
This algorithm is used in fault diagnosis and repair to dis-
cover why two agents have different truth values for the
same formula. The Shapiro Algorithm is modelled on the
algorithm in (Shapiro 1983), which was designed to debug
logic programs. It steps through a justification pursuing the
planning agent’s false beliefs to their underlying cause. The
justification is essentially a proof, in which each goal is sup-
ported by the set of subgoals from which it was derived. At
each stage the Shapiro Algorithm has identified a false goal
and needs to find out which of the supporting subgoals are
also false. It poses each of the subgoals, in turn, to the ex-

ternal agent, which it treats as an oracle. The Shapiro Al-
gorithm recurses on those subgoals found to be false. When
it reaches a false leaf, this leaf is treated as an underlying
cause of falsity. If it was a fact in the original ontology, it is
removed, since it is no longer believed to be true; if it came
to be believed as an expected effect of a previous action, fur-
ther investigation into that action rule is necessary.

Fault Diagnosis
Fault diagnosis is at the heart of the ORS system. The various
forms of abstraction and refinement define a set of potential
repairs, e.g., a predicate needs to be separated into two, an
argument must be added or dropped, etc. Fault diagnosis
consists of the analysis of the unexpected failure of a service
to be performed and tries to identify a repair.

Since the diagnostic module does not have access to a full
description of the problem, i.e., since it does not have ac-
cess to the ontology or inference processes of the external
agent, fault diagnosis is inevitably a heuristic process. It is
not intended to fix all misalignments between communicat-
ing agents. Nor is there any guarantee that the repair will
totally remedy the fault. Rather, we hope that the repair will
be good enough, perhaps in conjunction with subsequent re-
pairs, to allow the service to be performed.



Fault diagnosis is implemented as a decision tree labelled
by queries at the non-terminal nodes and repairs at the
leaves. See Figure 4 for part of this decision tree.

Was a query
made?

question?
surprising

Was there a

yes no

noyes

noyes

Does the predicate

match an expected
question?

name exactly

The fault diagnosis system traverses the decision tree
from the root. At each note it poses a query about the
events surrounding the plan execution failure or to the
agent who failed to provide a service. The answers to
these queries determine the path taken from that node.
When it reaches a leaf, some repairs are proposed.

Figure 4: Part of the Fault Diagnosis Decision Tree

When the planning agent asks an external agent to per-
form a service, both agents will have STRIPS-like action
rules that specify the action to be performed, the precondi-
tions under which the external agent will execute this action
and the effects of the action. However, these two action rules
may differ. Such differences can cause the planning agent’s
plan to fail. Discovering these differences is the purpose of
fault diagnosis.

One of the key concepts in the fault-diagnosis decision
tree is that of a surprising question. The planning agent
expects to be queried about each of the external precondi-
tions in its action rule. If the external agent represents one
of these external preconditions in a different way to the plan-
ning agent, or if it has an external precondition that the plan-
ning agent does not have, then the query corresponding to
this external precondition will be surprising to the planning
agent.

The main part of the fault-diagnosing decision tree is sum-
marised below.

1. No query was made: i.e., the external agent did not
check any external preconditions with the planning agent.
Three possible diagnoses are suggested:

(a) This external agent is unable to perform services of this
kind. ORS will ask the external agent whether it can
perform this service. If not, then the ontological meta-
data that maps services to agents must be amended.
If so, then ORS asks the external agent the truth of each
of the preconditions of the planning agent’s action rule
for this service. Two possibilities arise:

(b) The external agent says that one of these precondi-
tions is false. The planning agent’s belief is assumed

to be wrong. Using the Shapiro Algorithm, the plan-
ning agent must discover the underlying cause of its
false belief and correct it.

(c) The external agent agrees that all of these precondi-
tions are true. The planning agent’s action rule must
be missing a precondition, which the external agent be-
lieves to be false. In the absence of hints as to what this
missing precondition is, ORS can classify the failure but
cannot repair it.

2. A surprising question was asked and its predicate
matches that of a rule precondition, although the ques-
tion and the precondition differ: It appears that the
agents disagree about the exact form of the external pre-
condition. The nature of this mismatch can be inferred
by comparing the surprising question with the planning
agent’s precondition. It will fall into one of the following
classes:

(a) The arities of the two predicates are different. Propo-
sitional abstraction or refinement is used to align the
planning agent’s predicate with the external agent’s.

(b) The types of the predicate’s arguments appear to be dif-
ferent, but reordering them enables a match to be made.
Argument permutation is used to reorder the arguments
so that they match.

(c) The types of the predicate’s arguments are different —
even after argument permutation. Domain abstraction
or refinement is used to align the types of the plan-
ning agent’s predicates or functions with the external
agent’s.

(d) There is no signature mismatch. Just as in case 1b, the
two agents disagree on the truth of this precondition.
The Shapiro Algorithm is again used to detect the un-
derlying cause of this disagreement and correct it.

3. A surprising question was asked and its predicate does
not match any rule precondition: Either this question
does nevertheless correspond to a planning agent’s pre-
condition or the external agent’s action rule appears to
have an external precondition that the planning agent’s
doesn’t.

(a) One of predicates is a subtype of the other. Predicate
abstraction or refinement can be used to force the plan-
ning agent’s precondition to match that of the external
agent.

(b) There is no type relation between the predicates. There
is a missing precondition. The surprising question can
provide a clue that enables ORS to construct the missing
precondition to be added to the planning agent’s action
rule using precondition refinement.

4. Only non-surprising questions were asked: Assume the
most recent one caused the action failure. There are two
possibilities:

(a) The question was a wh*-question and the planning
agent instantiated the variable to the wrong value. ORS
can classify this error, but cannot repair it.

(b) The question was not a wh*-question and the planning
agent gave the wrong truth value. So the two agents



differ over the truth of this precondition. ORS uses the
Shapiro Algorithm to identify and fix the underlying
cause of the planning agent’s false belief.

Repairing Diagnosed Faults
Fault diagnosis not only identifies a fault in the planning
agent’s ontology, but when this fault can be repaired, it also
identifies the abstraction, refinement or belief revision that
implements this repair. For instance, leaf 1b in the decision
tree identifies belief revision via the Shapiro Algorithm; leaf
2a identifies either propositional abstraction or refinement;
while leaf 2c identifies either domain abstraction or refine-
ment.

In the case of abstraction, implementing the repair is usu-
ally unproblematic. But, as mentioned above, refinement
usually requires constructing, inferring or guessing missing
information. Sometimes the context of the diagnosis sug-
gests the form of the missing information, such as in leaf 3b.
Sometimes it does not, such as in leaf 1c. Sometimes, in
the absence of useful contextual information, ORS resorts to
using default values to fill-in gaps. These mechanisms are
illustrated in the next §.

A Worked Example
The following worked example is intended to illustrate the
ORS system as it creates and executes plans, detects and di-
agnoses failure, repairs its ontologies, then replans recur-
sively until it either constructs a plan that executes success-
fully or it fails. The domain concerns the submission of the
camera-ready copy of an accepted paper to a conference,
then making plans to attend the conference and claim ex-
penses. It uses a peer-to-peer, multi-agent system. Various
agents assist the paper writer to submit the paper and attend
the conference. They interact together to achieve the various
goals this entails.

In this example, the planning agent acts as the paper
writer’s personal assistant. The plan includes steps in which
the other agents perform various services, e.g., accept the
submitted paper. If the planning agent’s ontology were an
accurate model of the world, then it would be bound to suc-
ceed. So a failure during plan execution signals an ontology
failure. For instance, the submission agent might refuse to
accept the paper. The traveller must then diagnose the fault
in its ontology and repair it. A new plan for the goal is then
derived and executed. This new plan may also fail, trigger-
ing a further round of diagnosis and repair. This process
recurses until either a plan is derived that successfully exe-
cutes or the planning agent is unable to diagnose or to repair
a fault.

The agents involved are as follows:
Planning Agent: which is responsible for forming and ex-

ecuting the overall plan.
Publication Agent: through which camera-ready copy can

be sent for publication in the proceedings.
Registration Agent: which can register conference atten-

dees.

Accommodation Agent: which can book accommodation
for a conference delegate.

Paper Conversion Agent: which is able to convert papers
into different formats.
The planning agent forms the following plan from its ini-

tial ontology:
(SendPaper Researcher My-Paper.ps Ai-Conf),
(Register Researcher Ai-Conf Registration-Cost),
(BookAccom Researcher Ai-Conf Accommodation-Cost).

The first action, SendPaper, fails to be executed. There
was some questioning before the failure occurred, which
included a query from the publication agent: (Class My-
Paper.ps Pdf-Paper), which was surprising. The planning
agent had believed that papers could be sent in any format,
and thus attempted to send a ps paper, but it seems that
any paper submitted must be of class Pdf-paper. The plan-
ning agent consequently uses precondition refinement to add
a precondition to the SendPaper action rule that the paper
must be in pdf format. It now plans again. Because of this
additional precondition, the new plan requires an additional
action, Convert-Paper to convert the original ps paper into
pdf. The new plan is:
(Convert-Paper Researcher My-Paper.ps My-Paper.pdf)
(SendPaper Researcher My-Paper.pdf Ai-Conf),
(Register Researcher Ai-Conf Registration-Cost),
(BookAccom Researcher Ai-Conf Accommodation-Cost).

The first and second action are now executed successfully.
The third action, Register, fails, following a surprising ques-
tion: (Money PA Dollars ?Amount), where PA is the plan-
ning agent. The predicate Money matches a precondition
that PA was expected to be asked about: (Money PA 100);
however, the surprising question has an extra argument con-
cerning currency. The planning agent discovers what the
class of this extra argument is (if it does not currently have
this information, it can question the registration agent) and
performs propositional refinement. Every instance of this
predicate must also be changed. It is possible to use heuris-
tics to guess what this value should be: for example, if the
conference is held in the USA, then the default value for cur-
rency may be US dollars.

After this change has been made, the planning agent re-
plans to form the following plan:
(Register Researcher Ai-Conf Dollars Registration-Cost),
(BookAccom Researcher Ai-Conf Dollars Accommodation-
Cost).
These actions are performed successfully.

This worked example has been implemented in the ORS
system and successfully executed.

Evaluation
We evaluated the ORS system by testing it on a number of
ontologies. To be tested, an ontology had to meet two main
requirements:

1. There had to be successive versions of the ontology, so
that we could show that ORS could deal with the kinds
of ontological revisions that arise in real-world examples.
The task of ORS was to repair an earlier version of the
ontology into a later version.



2. It had to be possible to pose multi-agent planning prob-
lems using the ontology. This enabled ORS to employ its
machinery for fault diagnosis and repair.

These criteria were quite difficult to meet. To meet require-
ment 1 we had to talk to ontology developers, but not all
developers stored historical versions of their ontologies. On-
tologies that already meet requirement 2 are rare: the worlds
of ontology development and plan formation are mostly dis-
joint. So, we had either to retrofit a planning scenario into
the ontology, e.g., by providing action rules etc. as additional
material, or by translating knowledge-bases developed for
planning applications into KIF ontologies. Both of these
adaptations were time consuming, so some of our evaluation
was done by hand examination of the differences between
successive ontologies to analyse whether these differences
could, in principle, be handled by ORS.

We found suitable evaluation material in the following on-
tologies:
PSL: The Process Specification Language was developed

by the Manufacturing Systems Integration Division of the
National Institute of Standards and Technology. It defines
a neutral representation for manufacturing processes.

AKT: An ontology of academic research in Computer Sci-
ence developed by the Advanced Knowledge Technolo-
gies interdisciplinary research collaboration in the UK.

SUMO: The Suggested Upper Merged Ontology provides a
generic structure and general concepts upon which more
specific ontologies can be developed. It was developed
within the Standard Upper Ontology Working Group.

Planet: Three planning knowledge bases from the PLANET
plan formation network, converted to KIF ontologies.
For each of these ontologies we collected two or more

versions of them and identified the differences between suc-
cessive versions. Each such difference was regarded as a
data-point for our evaluation. Let before and after be
the differing parts of the earlier and later versions of the on-
tology, respectively. There might be several such differences
between successive versions of an ontology: each one was
considered separately. Altogether, we identified 325 such
data-points. The question addressed in the evaluation was:

Could ORS automatically correct before to after,
given an appropriate goal for which to plan?

The correction was usually effected by a single refinement
or abstraction.

We classified the results of our analysis as follows.
1. ORS could refine the mismatch;
2. ORS could not currently refine the mismatch, but non-

major changes to the system would allow ORS to refine
it;

3. ORS could not refine the mismatch. This was because:
(a) ORS did not have sufficient functionality;
(b) This particular mismatch was outside the scope of the

project;

(c) This mismatch was irrelevant to an automated system
— this was usually a change to commenting or format-
ting;

(d) This mismatch could not occur in the restricted KIF that
ORS was designed to use;

(e) This mismatch could not be represented in a planning
context.

4. The information we had about the mismatch was insuffi-
cient to diagnose which of the above categories it would
fall into.

The proportions of results falling within each of these cat-
egories from our analysis of the above ontologies is repre-
sented as a pie-chart in Figure 5.

Each segment of the pie chart represents and is labelled
by one of the mismatch categories defined in the above
classification. Its size represents the proportion of ex-
amples of that kind of mismatch found in the ontologies
we analysed. It will be seen that over a third (38.8%)
of the examples can be handled by ORS in its current
early stage of development (category 1) and a further
6.5% are within its scope (category 2). The rest are
outside its scope for a variety of reasons (category 3)
or we have insufficient information to tell (category 4).

Figure 5: Results of the Evaluation of ORS

Related Work
Most existing ontology mapping techniques have a large
static element, require complete access to the ontologies
whose mismatches are to be resolved and work only with
classification hierarchies. So they cannot provide the func-
tionality required to solve the problem identified in this pa-
per. The ORS system implements an ontology repair mech-
anism, for a large fragment of first-order logic, that is dy-
namic, has only limited access to the mismatching ontolo-
gies and is entirely automatic. On the other hand, we have to
assume that the mismatching ontologies are largely in agree-
ment.



Belief revision is part of what is required in ontology re-
pair, but changes to the underlying ontological representa-
tion are also required. In fact, most of ORS’s repair opera-
tions and repairs are changes to the underlying representa-
tions, i.e., predicate, domain or propositional refinement or
abstraction.

The work of Pease, Colton, Smaill and Lee (Pease et al.
2004) on implementing Lakatos’s methods of proofs and
refutations (Lakatos 1976) is also aimed at the problem of
ontological repair. They use Colton’s HR system to discover
conjectures that are nearly always true and a multi-agent sys-
tem interacts to modify the ontology to make these conjec-
tures into theorems. This is done by analysing the counter-
examples or failed proofs then adjusting the definitions of
predicates, functions and data-structures to either repair the
failed proofs, adjust the conjectures or remove the counter-
examples. This work differs from ORS in two main respects.
Firstly, the trigger for ontological repair is a nearly-true con-
jecture, rather than a failed plan. Secondly, the repair is to
adapt some definitions in terms of fixed underlying prim-
itives, rather than to change the syntactic structure of the
ontology’s signature. There is undoubtably scope for com-
bining these complementary approaches.

The problem of resolving conflicts between initially iden-
tical representations that have diverged is also addressed by
the field of optimistic replication (Saito & Shapiro 2003).
Replicated data often diverges from the original source due
to updating, and this problem is commonly addressed by
blocking access to a replica until it is provably up to date;
however, optimistic replication allows such changes to occur
asynchronously, discovers conflicts after they happen and
then attempts to resolve them. These conflicts are indicated
by the violation of a conflict detecting precondition, which
must be given, by the user or automatically, when the update
is made. This differs from our approach, where we assume
that updates will be made without thought as to how they
may conflict with a different version and conflicts are de-
tected when communication failure between agents occurs,
indicating some underlying mismatch. Because the mis-
match occurs between agents that can communicate and rea-
son about potential differences, we then have a rich source
of information that can be used in diagnosis and refinement
which is not available in optimistic replication, where con-
flicts must usually be resolved by being passed back to the
user.

Conclusion
We have argued that representation is a fluent in common-
sense reasoning, and that repairs to and evolution of rep-
resentation is an everyday event. If intelligent agents are
to conduct commonsense reasoning, it will be necessary to
build automated reasoning systems in which the representa-
tion can evolve dynamically in reaction to unexpected fail-
ures and successes of reasoning, and to other triggers yet
to be explored. In particular, such functionality will be an
essential ingredient in interacting, peer-to-peer multi-agent
systems, such as are envisaged in the Semantic Web. Agents
will need to be able to cope dynamically with minor varia-
tions between their ontologies.

We have initiated research into automatic dynamic on-
tology evolution. The ORS system operates in a planning
domain over KIF ontologies, where failures in plan execu-
tion trigger repairs to the planning agent’s ontology. Despite
the simplifying assumptions and limited functionality of this
prototype system, it can account for over a third of the on-
tological mismatches between different versions of several
popular and widely used ontologies. More details about this
work can be found in (McNeill 2005).

Further work is clearly required to lift the current limi-
tations of this work: removing the simplifying assumptions
about agents; extending it to other kinds of ontology such
as those based on description logics; extending the kinds of
mismatch and repair triggers it can deal with; applying it to
non-planning domains; and implementing it within a fully
peer-to-peer architecture, in which all agents are forming
plans and repairing their ontologies. We are currently en-
gaged on this further work within the EU Open Knowledge
Project10.
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